

Cambridge International Examinations

Cambridge International Advanced Subsidiary Level

MATHEMATICS
Paper 2
October/November 2016
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level – October/November 2016	9709	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or
 which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A
 or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For
 Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to
 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level – October/November 2016	9709	22

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent			
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)			
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)			
CWO	Correct Working Only – often written by a 'fortuitous' answer			
ISW	Ignore Subsequent Working			
SOI	Seen or implied			
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)			

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \(\hline \)" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level – October/November 2016	9709	22

1		State non-modulus equation $(0.4x-0.8)^2 = 4$ or equivalent or corresponding pair of linear equations	B1		SR One solution only – B1
		Solve 3-term quadratic equation or pair of linear equations	M1		Must see some evidence of attempt to solve the quadratic for M1 for at least one value of <i>x</i> For a pair of linear equations, there must be a sign difference
		Obtain -3 and 7	A1	[3]	If extra solutions are given then A0
2	(i)	Use $4^y = 2^{2y}$	B1		
		Attempt solution of quadratic equation in 2 ^y	M1		
		Obtain finally $2^y = 7$ only	A1	[3]	
	(ii)	Apply logarithms to solve equation of form $2^y = k$ where $k > 0$	M1		Must be using their positive answer for (i)
		Obtain 2.81	A1	[2]	Trade de disting their positive this well for (1)
3	(i)	Obtain integral of form $k_1 e^{\frac{1}{2}x} + k_2 x$	M1		Allow $k_1 = 4$
		Obtain correct $8e^{\frac{1}{2}x} + 3x$ oe	A1		
		Use limits correctly to confirm 8e – 2	A1	[3]	
	(ii)	Draw increasing curve in first quadrant	M1		If incorrect y intercept used then M1 A0
		Draw more or less accurate sketch with correct curvature,			
		gradient at $x = 0$ must be >0	A1	[2]	Allow if no intercept stated
	(iii)	State more and refer to top(s) of trapezium(s) above curve	B1	[1]	Can be shown using a diagram. Reference to a trapezium must be made

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level – October/November 2016	9709	22

		i .		
4 (i)	Substitute $x = -1$ and simplify	M1		Allow attempt at long division, must get down to a remainder
				Allow M1 if at least 2 numerical values of <i>a</i> are used
				May equate to $(x+1)(Ax^2 + Bx + C) + R$
				allow M1 if they get as far as finding R
				anow with it diey get as fai as finding it
	Obtain $-4 + a - a + 4 = 0$ and conclude appropriately	A1	[2]	Must have a conclusion - allow 'hence shown', or made a statement of intent at the start of the question
(ii)	Substitute $x = 2$ and equate to -42 and attempt to			
(22)	solve	M1		May equate to $(x-2)(Ax^2 + Bx + C)$, must
				have a complete method to get as far as $a =$ to obtain M1
	Obtain $a = -13$	A1	[2]	
(iii)	Divide $p(x)$ with their a at least as far as			
	$4x^2 + kx$	M1		
	Obtain $4x^2 - 17x + 4$	A1		
	Obtain $(x+1)(4x-1)(x-4)$ or equivalent if x^2			
	already involved	A1		If $(x+1)(4x-1)(x-4)$ seen with no evidence
	aneady involved	711		of long division then allow the marks
	Obtain $(x^2 + 1)(2x - 1)(2x + 1)(x - 2)(x + 2)$	A1		
			[4]	
5 (i)	Use quotient rule (or product rule) to find first	3.74		a di cara di c
	derivative	M1		Quotient: Must have a difference in the
				numerator and $(x^2 + 1)^2$ in the denominator
	Obtain $\frac{\frac{4}{x}(x^2+1)-8x\ln x}{(x^2+1)^2}$ or equivalent	A1		Draduate Must say an application of the chair
	$\frac{1}{(x^2+1)^2}$ of equivalent	AI		Product: Must see an application of the chain rule.
	State $\frac{4}{x}(x^2+1) - 8x \ln x = 0$ or equivalent	A1		Condone missing brackets if correct use is implied by correct work later
	Carry out correct process to produce equation			
	without ln, without any incorrect working	M1		
	Confirm $m = e^{0.5(1+m^{-2})}$ or $x = e^{0.5(1+x^{-2})}$	A1		
		111	[5]	
	i .	1		•

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level – October/November 2016	9709	22

(ii)	Use iterative formula correctly at least once	M1		Should not be attempting to use $x_0 = 0$, but if used and 'recovered' then SC M1 A1- usually see $m_1 = 1.6487$
	Obtain final answer 1.895	A1		
	Show sufficient iterations to 6 sf to justify answer or show sign change in interval (1.8945, 1.8955)	A1	[3]	
6 (i)	Use $\cos 2\theta = 2\cos^2 \theta - 1$ appropriately twice	B1		Alternative method $ \frac{1 - 2\sin^2 \theta}{2\cos^2 \theta} = \frac{1}{2}\sec^2 \theta - \tan^2 \theta \text{ or} $ $ \frac{1}{2\cos^2 \theta} - \tan^2 \theta \text{ B1} $
	Simplify to confirm $1 - \frac{1}{2} \sec^2 \theta$	B1	[2]	then as for 2nd B1
(ii)	Use $\sec^2 \alpha = 1 + \tan^2 \alpha$	B1		
	Obtain equation $\tan^2 \alpha + 10 \tan \alpha + 25 = 0$ or equivalent	B1		
	Attempt solution of 3-term quadratic equation for $\tan \alpha$ and use correct process for finding value of α from negative value of $\tan \alpha$	M1		If quadratic is incorrect, need to see evidence of attempt to solve as required to obtain M1
	Obtain 1.77	A1		Allow better or in terms of π $\left(\frac{1013\pi}{1800}\right)$
(iii)	State or imply integrand $1 - \frac{1}{2}\sec^2\frac{1}{2}x$	B1	[4]	
(m)	Obtain integral of form $k_1x - k_2 \tan \frac{1}{2}x$	M1		
	Obtain correct $x - \tan \frac{1}{2}x$	A1		
	Apply limits correctly to obtain $\pi - 2$	A1	[4]	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level – October/November 2016	9709	22

7	(i)	Use correct addition formula for either $\cos(\theta + \frac{1}{6}\pi)$ or, after diffn, $\sin(\theta + \frac{1}{6}\pi)$	B1		Condone 'missing brackets'
		Differentiate to obtain $\frac{dy}{d\theta}$ of form $k_1 \sin \theta + k_2 \cos \theta$ or $k \sin(\theta + \frac{1}{6}\pi)$	M1		
		Divide attempt at $\frac{dy}{d\theta}$ by attempt at $\frac{dx}{d\theta}$	M1		
		Obtain $\frac{-\frac{3\sqrt{3}}{2}\sin\theta - \frac{3}{2}\cos\theta}{4\cos\theta}$ or equivalent	A1		
		Simplify to obtain $-\frac{3}{8}(1+\sqrt{3}\tan\theta)$	A1	[5]	
	(ii)	Identify $\theta = 0$	B1		soi
		Substitute 0 into formula for $\frac{dy}{dx}$ and take negative reciprocal Obtain gradient of normal $\frac{8}{3}$	M1 A1		be implied by $y = 1 + \frac{3\sqrt{3}}{2}$ or 3.6 Must be from correct (i)
		Form equation of normal through point $(0, 1 + \frac{3\sqrt{3}}{2})$	M1		
		Obtain $y = \frac{8}{3}x + 1 + \frac{3\sqrt{3}}{2}$ or equivalent	A1	[5]	